Department of Mathematical and Computational Sciences
 National Institute of Technology Karnataka, Surathkal

sam.nitk.ac.in
nitksam@gmail.com

Advanced Linear Algebra (MA 409)
 Problem Sheet-6

Linear Transformations, Null Spaces, and Ranges

1. Label the following statements as true or false. In each part, V and W are finite-dimensional vector spaces (over F), and T is a function from V to W.
(a) If T is linear, then T preserves sums and scalar products.
(b) If $T(x+y)=T(x)+T(y)$, then T is linear.
(c) T is one-to-one if and only if the only vector x such that $T(x)=0$ is $x=0$.
(d) If T is linear, then $T\left(0_{V}\right)=0_{W}$.
(e) If T is linear, then nullity $(T)+\operatorname{rank}(T)=\operatorname{dim}(W)$.
(f) If T is linear, then T carries linearly independent subsets of V onto linearly independent subsets of W.
(g) If $T, U: V \rightarrow W$ are both linear and agree on a basis for V, then $T=U$.
(h) Given $x_{1}, x_{2} \in V$ and $y_{1}, y_{2} \in W$, there exists a linear transformation $T: V \rightarrow W$ such that $T\left(x_{1}\right)=y_{1}$ and $T\left(x_{2}\right)=y_{2}$.
2. In the following exercises, prove that T is a linear transformation, and find bases for both $N(T)$ and $R(T)$. Then compute the nullity and rank of T, and verify the dimension theorem. Finally, use the appropriate theorems to determine whether T is one-to-one or onto.
(a) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $T\left(a_{1}, a_{2}\right)=\left(a_{1}+a_{2}, 0,2 a_{1}-a_{2}\right)$.
(b) $T: M_{2 \times 3}(F) \rightarrow M_{2 \times 2}(F)$ defined by

$$
T \quad\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right)=\left(\begin{array}{cc}
2 a_{11}-a_{12} & a_{13}+2 a_{12} \\
0 & 0
\end{array}\right) .
$$

(c) $T: P_{2}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ defined by $T(f(x))=x f(x)+f^{\prime}(x)$.
(d) $T: M_{n \times n}(F) \rightarrow F$ defined by $T(A)=\operatorname{tr}(A)$.
3. In this exercise, $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a function. For each of the following parts, state why T is not linear.
(a) $T\left(a_{1}, a_{2}\right)=\left(1, a_{2}\right)$
(b) $T\left(a_{1}, a_{2}\right)=\left(a_{1}, a_{1}^{2}\right)$
(c) $T\left(a_{1}, a_{2}\right)=\left(\sin a_{1}, 0\right)$
(d) $T\left(a_{1}, a_{2}\right)=\left(\left|a_{1}\right|, a_{2}\right)$
(e) $T\left(a_{1}, a_{2}\right)=\left(a_{1}+1, a_{2}\right)$
4. Suppose that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is linear, $T(1,0)=(1,4)$, and $T(1,1)=(2,5)$. What is $T(2,3)$? Is T one-to-one?
5. Prove that there exists a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ such that $T(1,1)=(1,0,2)$ and $T(2,3)=$ $(1,-1,4)$. What is $T(8,11)$?
6. Is there a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ such that $T(1,0,3)=(1,1)$ and $T(-2,0,-6)=(2,1)$?
7. Let V and W be vector spaces, let $T: V \rightarrow W$ be linear, and let $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be a linearly independent subset of $R(T)$. Prove that if $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is chosen so that $T\left(v_{i}\right)=w_{i}$ for $i=1,2, \ldots, k$, then S is linearly independent.
8. Let V and W be vector spaces and $T: V \rightarrow W$ be linear.
(a) Prove that T is one-to-one if and only if T carries linearly independent subsets of V onto linearly independent subsets of W.
(b) Suppose that T is one-to-one and that S is a subset of V. Prove that S is linearly independent if and only if $T(S)$ is linearly independent.
(c) Suppose $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for V and T is one-to-one and onto. Prove that $T(\beta)=$ $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n}\right)\right\}$ is a basis for W.
9. Define

$$
T: P(\mathbb{R}) \rightarrow P(\mathbb{R}) \text { by } T(f(x))=\int_{0}^{x} f(t) d t
$$

Prove that T linear and one-to-one, but not onto.
10. Let $T: P(\mathbb{R}) \rightarrow P(\mathbb{R})$ be defined by $T(f(x))=f^{\prime}(x)$. Recall that T is linear. Prove that T is onto, but not one-to-one.
11. Let V and W be finite-dimensional vector spaces and $T: V \rightarrow W$ be linear.
(a) Prove that if $\operatorname{dim}(V)<\operatorname{dim}(W)$, then T cannot be onto.
(b) Prove that if $\operatorname{dim}(V)>\operatorname{dim}(W)$, then T cannot be one-to-one.
12. Give an example of a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $N(T)=R(T)$.
13. Give an example of distinct linear transformations T and U such that $N(T)=N(U)$ and $R(T)=$ $R(U)$.
14. Let V and W be vector spaces with subspaces V_{1} and W_{1}, respectively. If $T: V \rightarrow W$ is linear, prove that $T\left(V_{1}\right)$ is a subspace of W and that $\left\{x \in V: T(x) \in W_{1}\right\}$ is a subspace of V.
15. Let V be the vector space of sequences. Define the functions $T, U: V \rightarrow V$ by

$$
T\left(a_{1}, a_{2}, \ldots\right)=\left(a_{2}, a_{3}, \ldots\right) \text { and } U\left(a_{1}, a_{2}, \ldots\right)=\left(0, a_{1}, a_{2}, \ldots\right)
$$

T and U are called the left shift and right shift operators on V, respectively.
(a) Prove that T and U are linear.
(b) Prove that T is onto, but not one-to-one.
(c) Prove that U is one-to-one, but not onto.
16. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be linear. Show that there exist scalars a, b, and c such that $T(x, y, z)=a x+b y+c z$ for all $(x, y, z) \in \mathbb{R}^{3}$. Can you generalize this result for $T: F^{n} \rightarrow F$? State and prove an analogous result for $T: F^{n} \rightarrow F^{m}$.
17. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be linear. Describe geometrically the possibilities for the null space of T.
18. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Include figures for each of the following parts.
(a) Find a formula for $T(a, b)$, where T represents the projection on the y-axis along the x-axis.
(b) Find a formula for $T(a, b)$, where T represents the projection on the y-axis along the line $L=$ $\{(s, s): s \in R\}$.
19. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$.
(a) If $T(a, b, c)=(a, b, 0)$, show that T is the projection on the $x y$-plane along the z-axis.
(b) Find a formula for $T(a, b, c)$, where T represents the projection on the z-axis along the $x y$-plane.
(c) If $T(a, b, c)=(a-c, b, 0)$, show that T is the projection on the $x y$-plane along the line $L=$ $\{(a, 0, a): a \in \mathbb{R}\}$.
20. Using the notation in the definition above, assume that $T: V \rightarrow V$ is the projection on W_{1} along W_{2}.
(a) Prove that T is linear and $W_{1}=\{x \in V: T(x)=x\}$.
(b) Prove that $W_{1}=R(T)$ and $W_{2}=N(T)$.
(c) Describe T if $W_{1}=V$.
(d) Describe T if W_{1} is the zero subspace.
21. Suppose that W is a subspace of a finite-dimensional vector space V.
(a) Prove that there exists a subspace W^{\prime} and a function $T: V \rightarrow V$ such that T is a projection on W along W^{\prime}.
(b) Give an example of a subspace W of a vector space V such that there are two projections on W along two (distinct) subspaces.
22. Prove that the subspaces $\{0\}, V, R(T)$, and $N(T)$ are all T-invariant.
23. If W is T-invariant, prove that T_{W} is linear.
24. Suppose that T is the projection on W along some subspace W^{\prime}. Prove that W is T-invariant and that $T_{W}=l_{W}$.
25. Suppose that $V=R(T) \oplus W$ and W is T-invariant.
(a) Prove that $W \subseteq N(T)$.
(b) Show that if V is finite-dimensional, then $W=N(T)$.
(c) Show by example that the conclusion of (b) is not necessarily true if V is not finite-dimensional.
26. Suppose that W is T-invariant. Prove that $N\left(T_{W}\right)=N(T) \cap W$ and $R\left(T_{W}\right)=T(W)$.
27. Let V and W be vector spaces, and let $T: V \rightarrow W$ be linear. If β is a basis for V, then prove that

$$
R(T)=\operatorname{span}(\{T(v): v \in \beta\}) .
$$

28. Let V and W be vector spaces over a common field, and let β be a basis for V. Then for any function $f: \beta \rightarrow W$ there exists exactly one linear transformation $T: V \rightarrow W$ such that $T(x)=f(x)$ for all $x \in \beta$.
29. Let V be a finite-dimensional vector space and $T: V \rightarrow V$ be linear.
(a) Suppose that $V=R(T)+N(T)$. Prove that $V=R(T) \oplus N(T)$.
(b) Suppose that $R(T) \cap N(T)=\{0\}$. Prove that $V=R(T) \oplus N(T)$.
30. Let V be the vector space of sequences. Define $T: V \rightarrow V$ by

$$
T\left(a_{1}, a_{2}, \ldots\right)=\left(a_{2}, a_{3}, \ldots\right)
$$

(a) Prove that $V=R(T)+N(T)$, but V is not a direct sum of these two spaces. Thus the result of Exercise 29(a) above cannot be proved without assuming that V is finite-dimensional.
(b) Find a linear operator T_{1} on V such that $R\left(T_{1}\right) \cap N\left(T_{1}\right)=\{0\}$ but V is not a direct sum of $R\left(T_{1}\right)$ and $N\left(T_{1}\right)$. Conclude that V being finite-dimensional is also essential in Exercise 29(b).
31. A function $T: V \rightarrow W$ between vector spaces V and W is called additive if $T(x+y)=T(x)+T(y)$ for all $x, y \in V$. Prove that if V and W are vector spaces over the field of rational numbers, then any additive function from V into W is a linear transformation.
32. Let $T: \mathbb{C} \rightarrow \mathbb{C}$ be the function defined by $T(z)=\bar{z}$. Prove that T is additive (as defined in the above exercise) but not linear.
33. Prove that there is an additive function $T: \mathbb{R} \rightarrow \mathbb{R}$ that is not linear.
[Hint : Let V be the set of real numbers regarded as a vector space over the field of rational numbers. As every vector space has a basis, V has a basis β. Let x and y be two distinct vectors in β, and define $f: \beta \rightarrow V$ by $f(x)=y, f(y)=x$, and $f(z)=z$ otherwise. Hence there exists a linear transformation $T: V \rightarrow V$ such that $T(u)=f(u)$ for all $u \in \beta$. Then T is additive, but for $c=y / x, T(c x) \neq c T(x)$.]
34. Let V be a vector space and W be a subspace of V. Define the mapping $\eta: V \rightarrow V / W$ by $\eta(v)=v+W$ for $v \in V$.
(a) Prove that η is a linear transformation from V onto V / W and that $N(\eta)=W$.
(b) Suppose that V is finite-dimensional. Use (a) and the dimension theorem to derive a formula relating $\operatorname{dim}(V), \operatorname{dim}(W)$, and $\operatorname{dim}(V / W)$.
(c) Read the proof of the dimension theorem. Compare the method of solving (b) with the method of deriving the same result as outlined below :
Let W be a subspace of a finite-dimensional vector space V, and consider the basis $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ for W. Let $\left\{u_{1}, u_{2}, \ldots, u_{k}, u_{k+1}, \ldots, u_{n}\right\}$ be an extension of this basis to a basis for V. Then $\left\{u_{k+1}+W, u_{k+2}+W, \ldots, u_{n}+W\right\}$ is a basis for V / W and

$$
\operatorname{dim}(W)+\operatorname{dim}(V / W)=\operatorname{dim}(V)
$$

